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Thermodynamics and correlations of a helical spin 
chain with non-magnetic impurities 

I Haradat and H J Mikeska 
Institut fur Theoretische Physik, Universitat Hannover, Appelstrasse 2,3000 Hannover 1 ,  
Federal Republic of Germany 

Received 30 August 1988, in final form 21 August 1989 

Abstract. The effect of non-magnetic impurities on the thermodynamics of a classical heli- 
magnetic chain with antiferromagnetic nearest-neighbour and next-nearest-neighbour inter- 
actions is studied by means of the transfer matrix method. The results for the partition 
function and the nearest-neighbour and the next-nearest-neighbour spin correlation func- 
tions are obtained exactly for both the isotropic Heisenberg model and the planar model as 
functions of temperature and concentration of non-magnetic impurities. The magnetic 
susceptibility is calculated up to terms linear in the concentration. It is found that a non- 
magnetic impurity modifies the helical spin structure in its vicinity and leads consequently 
to the formation of a new local equilibrium spin structure, which is called a spin complex. 
The consequences of this peculiar spin complex on the thermodynamics, especially on the 
spin-correlation functions, are extensively discussed in connection with experimental results 
on FeMgBO,. 

1. Introduction 

A non-magnetic impurity plays a crucial role in a one-dimensional spin chain. This is 
obvious in the case where only nearest-neighbour (NN) interactions exist, because the 
path of spin correlation cannot avoid a non-magnetic impurity site, at which a magnetic 
chain is completely broken up. This effect causes, for example, the novel phenomenon 
of the crossover of anisotropic susceptibilities (Harada et a1 1980) as well as the strong 
reduction in the Nee1 temperature in quasi-one-dimensional magnetic systems (Hone et 
a1 1975). On the other hand, when the system includes next-nearest-neighbour (NNN) 
interactions the situation is rather different and is less clear than in the former case 
(Villain 1979). 

Let us envisage the effect of a single non-magnetic impurity on the ground-state spin 
structure of a magnetic chain in the following two situations: 

(i) The ground state of the host is antiferromagnetic. 
(ii) The ground state of the host has the helical spin structure. 

Case (i) occurs when the ratio between the NN interaction constant 2J1 and the NNN 
interaction constant 2 J 2  (both are assumed to be antiferromagnetic in this paper), i.e. 
j = J z / J 1 ,  is smaller than 0.25. In this case the antiferromagnetic spin structure persists 
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even when the system is diluted, although the sublattices are interchanged at the impurity 
site because one spin is missing there. On the other hand, when the ratiojis greater than 
0.25, the helical spin structure occurs. It is conceivable that, in this spin structure, a non- 
magnetic impurity modifies the helical spin structure and leads consequently to a new 
local equilibrium spin structure. We call it a spin complex in this paper. The spin structure 
of this spin complex is not obvious (Harada and Mikeska 1988b). 

Thus the purpose of this paper is to study the effect of non-magnetic impurities on 
the thermodynamics of the helical spin chain described by the following Hamiltonian: 

N - 1  N - 2  

H = 2J1 C. Sp  S p +  I + 2J2 C. S ,  S,),.2 (1) 
p =  1 p =  I 

where S,  denotes a unit vector at site p ,  S p  = (sin 0, cos QP, sin 0, sin Q>, , cos 0,) for 
the Heisenberg model or S,  = (cos e p ,  sin 8,) for the planar model. We assume that the 
chain has N sites with free ends. We here note that the spin magnitude factor 
-is absorbed in the exchange interaction constants. In this paper, the previous 
theory of the transfer matrix method for the pure systems (Harada 1984, Harada and 
Mikeska 1988a) will be extended to include non-magnetic impurities. Exact results for 
the internal energy, the specific heat, the NN spin correlation function and the NNN spin 
correlation function for an arbitrary concentration of non-magnetic impurities will be 
presented. The susceptibility will be calculated up to terms linear in the concentration. 

It is worthwhile noticing that the material FeMgBO, may be described by our model. 
Here magnetic Fe3+ ions form a zigzag chain in the c direction with distances of 2.9 A 
between NNS and 3.1 A between NNNS (Weidenmann 1979). Thus, the NN interaction 2Ji 
and the NNN interaction 2J2  inside the chains are of the same order of magnitude. 
Furthermore, there exists a crystallographic site inversion of about 15% between mag- 
netic Fe3+ ions and non-magnetic Mg2" ions and this fact makes this material a diluted 
system (Wiedenmann 1979). In fact, Weidenmann et a1 (1983) and Weidenmann and 
Mezei (1986) found in this material not only characteristics of a helimagnet but also 
magnetic behaviour of spin-glass type. We are interested in experimental data, in 
particular, on the correlation functions. The sum of NN and NNN correlation functions 
exhibits a saturation tendency at low temperatures (Weidenmann et a1 1981). We try to 
interpret this behaviour as a result of the spin complex mentioned above. In addition, 
the observed susceptibility shows a broad maximum at a certain temperature, which is 
very low compared with that in ordinary NN antiferromagnets (Weidenmann and Burlet 
1978). We shall demonstrate that this fact is also consistent with our numerical results. 

In the next section, we formulate the transfer matrix method appropriate for a 
diluted Heisenberg model with NN and NNN interactions and obtain the thermodynamic 
quantities in terms of the eigenvalues and the eigenfunctions of the integral equations 
for the pure systems. In 5 3, we treat the planar model in a similar way as in the 
Heisenberg model. Numerical results for both models are presented and discussed in 
9 4. The last section ( 0  5) is devoted to the conclusion. 

2. Isotropic Heisenberg chain 

2.1. Partition function and free energy 

Let us first recall the procedure for obtaining the exact partition function in the pure 
case (Harada and Mikeska 1988a). The partition function for the pure Heisenberg spin 
chain with n spins is given by 
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where dQ, denotes the volume element of the solid angle for S,, and t = kgT/2J1,  
kB being the Boltzmann constant and T denoting absolute temperature. The multiple 
integration in equation (2) can conveniently be carried out iteratively. Integrate first 
over S I  for a given configuration of S 2 ,  S 3 ,  . . . S, .  Describing S I  in polar coordinates 
with S 2  as the polar axis and with an arbitrary direction in the plane perpendicular to S 2  
to define the zero of the azimuthal angle 0 the result of this integration depends only 
on the angle between S 2  and S 3 .  Therefore we can iterate the procedure, integrating 
over S 2  for a given configuration of S 3 .  . . . , S ,  and continuing the iteration to work 
through the chain. This gives the result 

where 

A ( @ , ,  e,+,; Q,) = iexp[-(cos@, + cos0,+,) /2t  

-  COS 0, cos e,+ + sin 0, sin 0, + cos @,,)/t]. (4) 

This result is the appropriate generalisation of the result for the isotropic NN Heisenberg 
chain as given by Fisher (1964). For NN interactions the polar axis is defined as above by 
the neighbouring spin but the integrand does not depend on the azimuthal angle @, and 
the integral is a constant; for NNN interactions the integrand does depend on @, the 
integral over S ,  depends on x, + = cos 0, + , and the iterative integration leads to the 
convolution structure of equation (3). 

The partition function from equation (3) is equivalent to the partition function of the 
spin system described by the following Hamiltonian: 

HD = (2J2S,, * S , + *  + 21,s;). 
P 

We thus find that the statistical mechanics of the isotropic Heisenberg model with N N  
and N N N  interactions are governed by the same integral equation as the N N  model in an 
external magnetic field (Blume etal1975). In analogy to the planar model (Harada 1984) 
the Heisenberg chain in an external magnetic field is called the dual model for the system 
defined in equation (1). The situation is illustrated schematically in figure l(a).  Owing 
to the non-commutativity of rotations in three dimensions this duality, in contrast to the 
corresponding property of the planar model, cannot be derived on the level of the 
Hamiltonian but only on the basis of an explicit comparison of the transfer integral 
calculations for the two models. 

We now proceed to the evaluation of the partition function as given in equation (3). 
Since the integrations over {@,} are separable, they result in the zeroth-order modified 
Bessel function. The kth-order Bessel function is defined by the integral 

1 I-n 

On the other hand, to perform the multiple integration over (0,) we introduce the 
following integral equation (Blume et a1 1975): 
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Figure 1. The correspondence between a real lattice and a dual lattice; (a) the pure case; ( b )  
the magnetic chain involving a single non-magnetic impurity; (c) the magnetic chain involving 
two non-magnetic impurities which occupy the NN sites. In the real lattice, each full line and 
each broken line represent, respectively, the N N  interaction constant 25,  and the N N N  

interaction constant 2J2 between spins denoted by the full circles. An open circle represents 
a non-magnetic impurity. In the dual lattice, on the other hand, spins denoted by the full 
squares couple to the N N  spins with interaction constant 2J2 and are in an applied field of 
magnitude 25, .  The spin at the centre of ( b )  is an impurity spin isolated from others but in 
an applied field of magnitude 2 J z  while that of (c) is an isolated impurity spin in a zero field. 

where 

A k ( x , , x 2 )  = exp[-(xl + ~ ~ ) / 2 t - j ~ ~ x ~ / t ] I k { - j [ ( l  -x;)( l  -~ :>] ' '~ / t )  (8) 
Here we have changed integral variables from {cos 0,} to {x,}. We solve this integral 
equation by means of the Gaussian quadrature (Blume et a1 1975). Utilising the well 
known expansion of the kernel A ,  with respect to A, and V,,, and employing the 
orthonormality relation among qm, we obtain 2,: 

Z ,  = B&A;-' (9) 
m 

where 

is the quantity characterising free-end effects. When n+ x ,  2, is dominated by the 
largest eigenvalue A. and the eigenfunction v o  belonging to ,lo. 

Now, we consider a diluted system with Nx non-magnetic impurities, x being the 
concentration of non-magnetic impurities. As is shown in figure l (b) ,  a single non- 
magnetic impurity does not break up the chain and the spins on both sides of the impurity 
are still coupled by the N N N  interaction without competition. This corresponds in the 
dual lattice to the isolated impurity spin in a field 2 J 2 .  Two or more consecutive non- 
magnetic impurities break up a chain completely at these sites, as is seen in figure l(c). 
This corresponds in the dual lattice to the existence of an isolated spin free from a field. 
Thus, the addition of non-magnetic impurities leads to break-up of the dual lattice into 
isolated impurity spins and isolated chain segments of finite lengths. 



Helical spin chain with non-magnetic impurities 957 

From these observations we realise the important consequence that, when non- 
magnetic impurities are introduced, all information carried by the transfer matrix is lost 
at the impurity sites (which correspond to free ends in the dual lattice). This fact enables 
us to calculate the partition function as a product of the partition functions for the 
independent segments having finite lengths with n spins. Since the density (per site) of 
segments with n spins is given by 

P n ( x )  = x2(1 - x y  (11) 

which is normalised as 

the partition function of the diluted system is given by 

Z," = zgh'Pd-4 z y 4 .  
n = 2  

Here Z,  is the partition function for the finite chain with n spins and is given by equation 
(9) while Z ,  is the contribution from NNN spins next to an impurity and is given by 
Lo( - j / l ) ,  where Lk(z)  is defined by 

1 

L k ( z )  = 4 d x x k  exp(zx). I-, 
As a result, we obtain the following dimensionless free energy per site: 

The internal energy E in units of 2 J l  and the specific heat C in units of kB are obtained 
using the following formulae: 

E = t2af/at (16) 

C = a E / a t .  (17) 

2.2. Correlation function and susceptibility 

A correlation function W, = (S, S,,,) for the diluted system is an average over all 
configurations of non-magnetic impurities. First we consider the NN correlation function 
W ,  = (cos eP), which corresponds to the magnetisation in the dual lattice. The mag- 
netisation at a certain site depends only on the distances from the nearest non-magnetic 
impurities on both sides. The configurations of non-magnetic impurities other than these 
two non-magnetic impurities do not affect the magnetisation at the site. In other words, 
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it depends only on the length of the segment and on its location within the segment. 
Then, we can carry out the calculation for W1 exactly, obtaining 

where W , ( n )  is the NN correlation function summed over all configurations within a finite 
chain with n ( ~ 2 )  spins: 

n - 2  

Here we have defined the following integration: 

By inspection, we see that W 2  = (cos 0, cos 
calculated exactly in the similar way as 

+ sin 0, sin e,, cos @,) can be 

where the second term is the contribution from the NNN spins located just to the right 
and left of a non-magnetic impurity. The NNN correlation function summed over all 
configurations within a finite chain with n ( 2 3 )  spins is given by 

The results obtained so far are exact for an arbitrary concentration of non-magnetic 
impurities. However, calculations of W, for r 2 3 are not restricted to a segment but 
depend on the configurations of non-magnetic impurities other than the nearest non- 
magnetic impurities. Since we know only the information that the finite chain with n 
spins is formed for a given value of x, we cannot follow the procedure as before. We try 
to obtain it in the low-concentration limit of non-magnetic impurities. It is easy to show 
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that the spin correlation function is formally written as a function of the concentration 
x as 

W ,  = (1 - x)’”WF + ~ ( l  - x ) ~ - ’  2 W;(h)  + . . . 
h 

where We denotes the correlation function for a pure system, while W:(h)  denotes the 
correlation function in the chain involving a single non-magnetic impurity at a site h. 
The sum runs over N - 2 sites except two sites of the correlating spins. 

The correlation function Wp involves the multiple integral including the matrices, 
which leads to the rotation of polar coordinates {eq, Qq}. By virtue of the block-diagonal 
form of the matrices after integrationsover {Qq}, the resultant matrices in the integrations 
over {e,} are 2 X 2. Thus, we need to solve the following matrix integral equations 
(Harada and Mikeska 1988a): 

d ~ ?  H ( X 1 , X Z ) U m ( x > )  = T I m U m ( X 1 )  (25)  

where 

(1 + x p  (1 - x l ) l ” )  
H ( x l ,  x2) = &( 

-(1 - xl)l’* (1 + x p  

Here H T  denotes the transposed matrix of H ,  U ,  is a vector with two components ut, and 
U;, and U ,  is a vector with two components ut ,  and U ; .  In terms of the eigenvalues and 
the eigenfunctions, W,P is written as 

where 

with 

U ,  = -ut,(x)[(l - x)/2]1’2 + u $ ( x ) [ ( l  + x)/2]”2 

vm = ut , (x)[( l  - X)/2]”2 + ut,(x)[(l + x)/2]”2. 
(32) 

(33) 
Now, we consider W:(h)  in more detail. Without loss of generality, two spins are 
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assumed to be located at the zeroth and rth sites. In what follows, three different cases 
are considered separately. 

(i) The impurity is located outside sites between two spins, h < 0 or h > r .  We call 
this situation ‘out’. 

(ii) It is located between two spins, 1 < h < r - 1. We call this situation ‘in’. 
(iii) The last case, which we call ‘on’, is the case where an impurity is located at the 

First let us consider the out case, case (i). For example, when the impurity is located 

first or the ( r  - 1)th site. 

at the (-h)th site ( h  > 0), the spin correlation function is calculated to be 

Summing over h ,  we obtain the contribution from case (i) (the out case) as 

(35) 
B k  (EkmFOm + EOmFkm)Yh-l  

h € ( o u t )  k m BO 

Note that we have subtracted the term k = 0. (The prime attached to the summation 
denotes the summation excluding the term k = 0.) This expression is valid for r 2 1. 
Secondly, we consider the in case, case (ii), which occurs for r 2 4. Defining the inte- 
grations, which represent the free-end effect for the correlation, 

we obtain 

Lastly, we consider the on case, case (iii). This case, which occurs for r 2 3, is very 
similar to case (ii) and the result is 

In equations (38) and (39), we see that the spin correlation is finite even when the non- 
magnetic impurity is located between two spins as long as J 2  is finite. When J 2  = 0, L 1  
becomes zero so that there is no correlation as required by consistency. 

Summing all contributions up to the linear terms in the concentration x ,  we obtain 
the normalised susceptibility x: 
X t  = 1 - x + 2 2 (WP(1 - 2x) + x c. [Wf(h) - W ! ] )  + 0 ( x 2 )  

r h 
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where XP is the susceptibility for the pure case (Harada and Mikeska 1988a). This is our 
final result for the susceptibility. The numerical results will be presented in graphical 
form in § 4. 

3. Planar chain 

Generally speaking, the planar model is similar to the Heisenberg model. For example, 
the ground state has the same helical spin structure fo r j  > 0.25. We note, however, that 
the difference exists in thermodynamics at low temperatures and has been discussed in 
connection with the different natures of chiral domain walls in two models (Harada and 
Mikeska 1988a). Therefore, it is interesting to see how the different effects of non- 
magnetic impurities are in two models. 

For the planar chain, we can apply the transfer matrix method developed in the 
previous section with some modifications. The partition function forthiscase is expressed 
in the same form as equation (13) with a contribution from NNN spins next to an impurity 
Z,, which is Zo(-j/t),  and a contribution from a chain with n spins Z,, which is 

where 

We note that the angle 8, for S, is referred to the direction of Sp7 1. This partition function 
is equivalent to that of the planar chain with NN interactions in a magnetic field. Then, 
we can evaluate Z ,  in a similar way as in the previous section by considering the following 
integral equation: 

(43) 

with 

The result has the same form as equation (9) but B, should be replaced by 

Thus, solving the integral equation (43) ,  we obtain the internal energy and the specific 
heat for the planar chain. 
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Correlation functions are also obtained in a similar way, although we need to modify 
the definitions of some integrals. For the NN and NNN correlation functions, we define 
Bim in (20) and Bi$ in (23): 

Bim = Ip d e  q k ( e )  cos e q,(e) (46) 

Replacing also L , / L o  in (21) by Il/Zo we obtained the NN and the NNN correlation 
functions for the planar model. 

The result for the susceptibility (40) is valid if we use the following expressions: 

E k m  = Fkm 

C, = D, 

where c, and q, are the eigenvalue and the eigenfunction of the integral equation: 

In the next section, we compare the results with those for the Heisenberg model. 

4. Numerical results and discussion 

In this section, we present our numerical results which show the characteristic thermo- 
dynamic behaviour of the Heisenberg chain and of the planar chain with competing 
interactions. We have used the 24-point Gaussian integration formula to solve integral 
equations and to perform integrations. At  some points in the parameter space, we have 
checked the accuracy of our calculation by comparing the result with that obtained by 
using the 40-point Gaussian integration formula. Another check has been made for the 
case of J 2  = 0 for which we can easily reproduce the exact result. These procedures 
confirm that, for both models, errors are significant only below t < 0.05. 

In the numerical calculation, we have adopted the values j = 0.5 and j = 0.2. The 
ground state of the former case is helimagnetic while that of the latter case is anti- 
ferromagnetic. Furthermore, we fix the concentration at x = 0.15 and, for comparison, 
at x = 0.0. The values j = 0.5 and x = 0.15 may be appropriate for FeMgBO, (Wie- 
denmann et a1 1981). 
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t 

t 

Figure 2. Plots of the internal energy E per site 
versus temperature t for the Heisenberg model 
with j = 0.5 (curves A) and j = 0.2 (curves B): 
_ _ _  , results for x = 0.15; -, results for x = 0; 
+, +--. exact ground-state energies except for 
the case j = 0.5 a n d x  = 0.15 

First of all, we show the internal energy E as a function of temperature t in  figure 2 
for the Heisenberg model. The results for the planar model are very similar to these and 
therefore we do not give them here. Before discussing the numerical results, we estimate 
the ground-state energy for a diluted system. An estimate is easily performed for j < 0.25 
but it is more subtle for j > 0.25. This is because in the former case the ground-state 
spin structure is antiferromagnetic while in the latter case it is non-trivial. In a first 
approximation, let us assume that the spin structure is the same as that in the pure case 
except for an impurity site where two N N N  spins couple antiferromagnetically. The result 
is 

E = W1 +- jW, (53) 

where 

W1 = -(I -x)*/4j (54) 
W 2  = -(1 - x)~[x + (1 - x)(l - 1/8j2)] ( 5 5 )  for j > 0.25 

and 

w1 = -(1 -x)2 (56) 

w* = (1 - X)*(1 - 2x) (57) for 0 < j < 0.25. 

These values are indicated by the arrows on the ordinate in figure 2 as well as in figures 
5 and 6 later. The values f o r j  = 0.2 are exact and agree with our calculated result. For 
j = 0.5, however, the helical spin structure changes so as to gain energy by forming a 
spin complex. This is clearly seen in figure 2 for j = 0.5 and x = 0.15 as the energy 
difference between the limiting value and that indicated by the arrow. With temperature 
increasing from zero, E increases with a finite slope, which is a consequence of our 
classical treatment. We see that the steep slope for j = 0.5 and x = 0 around t = 0.1 
becomes washed out when the system is diluted with non-magnetic impurities. On the 
other hand, the result for j = 0.2 does not show any significant feature from dilution. 
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1.2 

Ill 
t t 2 0.4 0.6 0 ! 0.2 0.4 0.6 

t 
0 0.2 

t 

Figure3. Plotsofthespecificheat Cpersiteversus 
temperature t for the Heisenberg model with j = 
O.S(curvesA)andj = 0,2(curvesB):---,results 
for x = 0.15; -, results for x = 0. 

Figure4. Plotsof thespecific heat Cpersiteversus 
temperature t for the planar model with j = 0.5 
(curves A)  and j = 0.2 (curves B): ---, results for 
x = 0.15; -, results for x = 0. 

This difference is seen more clearly in figures 3 and 4, where the specific heat (which is 
proportional to the slope of E )  is plotted for the Heisenberg model and for the planar 
model, respectively, as a function of temperature t. At t = 0, C approaches a constant 
value since our model is classical. In a physical system, the quantum nature of spins 
manifests itself at low temperatures and hence C+ 0 as t+ 0. As was discussed in our 
previous papers (Harada 1984, Harada and Mikeska 1988a) the low-temperature specific 
heat of a helical chain is dominated by non-linear excitations called the chiral domain 
wall, whose nature in the Heisenberg model is rather different from that in the planar 
model. The chiral domain wall in the planar model has Ising character so that the 
contribution to the specific heat is more pronounced than in the Heisenberg model. 
When a non-magnetic impurity is introduced in the system, the chirality loses its memory 
at the impurity site where two "N spins couple antiferromagnetically without compe- 
tition. This means that a chiral domain wall is no longer stable topologically. This 
statement is consistent with the strong reduction in the specific heat of the diluted system 
for J' = 0.5. We note, however, that our results for both models cannot be correlated 
easily to the experimental data of Wiedenmann and Burlet (1978). The reason for this 
discrepancy is not known at present. 

Secondly, the results for the N N  and NNN correlation functions W1 and W ,  as a function 
of temperature t are shown in figure 5 for the Heisenberg model with; = 0.5 and in figure 
6 for the planar model with; = 0.5. In both cases, we see that, for x = 0, W 2  increases 
very rapidly with decreasing temperature and it reaches a value of -0.5 at t = 0. When 
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Figure 5.  Plots of ( a )  the NN spin correlation function W ,  and the NNN spin correlation 
function W 2  and ( b )  the sum of the NN and NNN spin correlation functions versus temperature 
t for the Heisenberg model with j = 0.5: ---, results for x = 0.15; -, results for x = 0. 

4 

-0.1- 

T 
s 

I b )  t 

-0.2 1 

the system is diluted, W 2  is essentially unchanged at high temperatures but begins to 
deviate at about t = 0.2 and saturates to a significantly smaller value at t = 0. This 
behaviour of W2 leads to the saturation tendency of the quantity W1 + Wz which we plot 
in figures 5 ( 6 )  and 6(b) .  Thus, our calculations reproduce the principal feature of 
W ,  + W 2  observed in FeMgB04. The quantitative comparison with experimental data, 
however, is left for a future study on the anisotropic Heisenberg model. 

Lastly, we show the susceptibilities x for the Heisenberg model (in figure 7) and for 
the planar model (in figure 8) as a function of temperature t. First we note that all 
susceptibility curves exhibit a rounded maximum at some representative temperature 
to. For the Heisenberg model with j = 0.5 it occurs at to = 0.1 for the pure case and at a 
slightly lower temperature for the diluted case. The correction due to non-magnetic 
impurities is negative for i  = 0.5 while for j = 0.2 it is positive and its magnitude is twice 
that for j = 0.5. In the planar model we see similar features but the magnitude of x is 
smaller and the values to are located at rather a high temperature compared with those 
in the Heisenberg model. The maximum usually disappears in the case of a diluted N N  
antiferromagnet, since the contribution from the finite chain with odd-number spins 
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0.k 
I I 

0.2 0.4 0.6 0 0.2 0.L 0.6 ' 

Figures. Plotsof the susceptibilityx per siteversus 
temperature t for the planar model with j = 0.5 
(curves A) and j = 0.2 (curves B): ---. results for 
x = 0.15; -. results for x = 0. 

t t 
Figure7. Plots of the susceptibilityxper siteversus 
temperature t for the Heisenberg model with j = 
0.5 (curvesA)andj  = 0,2(curvesB):---.results 
for .x = 0.15: -, results for x = 0. 

diverges at low temperatures. In our case, a single non-magnetic impurity breaks the NN 
interaction but not the NNN interaction so that the correction remains finite even at low 
temperatures at least for low concentrations. Here we wish to mention that, in diluted 
systems, the peaks in the ;y versus t curves are very broad and the values of to for these 
peaks are very low compared with the typical energy of the system, e.g. 2 J , .  These 
features are again consistent with the experimental observations. 

5.  Conclusion 

In this paper, we have developed the transfer matrix method appropriate for a diluted 
system with NN and NNN exchange interactions. From this method, we have obtained 
results for the internal energy, the specific heat and the NN and N N N  correlation functions, 
which are exact for an arbitrary concentration of non-magnetic impurities in the sense 
that we can improve them systematically to any desired degree. On the other hand, our 
results for the susceptibility are valid up to linear terms in the concentration only. 

On the basis of the numerical calculation, we have found that the non-magnetic 
impurities play characteristic roles especially in the helical short-range order phase for 
both models. A single non-magnetic impurity breaks up the NN interaction but not the 
NNN interaction so that two spins next to the impurity couple antiferromagnetically 
without competition, which means that they form an antiferromagnetic boundary in the 
helical order. This perturbation spreads over neighbouring spins even at zero tempera- 
ture. In fact, our calculation for; = 0.5 shows that W1 next to an impurity takes a value 
closer to -1 than to the bulk value of -1 (Harada and Mikeska 1988b). Roughly 
speaking, at low temperatures, the two spins at the NN and second-nearest neighbour 
positions of an impurity make an angle of 5n/6 ,  and the second- and third-nearest- 
neighbour spins have already recovered the bulk value of 2 1 ~ / 3 .  This means that the NN 
and third-nearest-neighbour spins make an angle of 3 n / 2 ,  so that W2 for this spin pair is 
zero. The tendency of NN spins near an impurity to couple more tightly in an anti- 
ferromagnetic manner is in common for all values of j but the length over which the 
impurity effect spreads depends crucially on j .  

These considerations are connected with our numerical results in the following way. 
Firstly the chiral domain wall is not topologically stable in the diluted system so that the 
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strong peak in the specific heat versus temperature curve should be reduced. This was 
observedin figures 3 and4. Secondly, we discuss the saturation effect of the sum W1 + W ,  
which is more significant in the planar model. As has been mentioned above, the 
larger value of W ,  near impurities yields a more effective energy gain, sacrificing the 
contribution from W,. This is clearly seen in figures 5 and 6 where at zero temperature 
W ,  and W ,  take, respectively, a larger and a smaller value than those estimated by 
assuming no rearrangement of the spin structure. As a result, Wz takes a rather small 
value to keep W1 large. On the other hand, above the temperature where the magnetic 
correlation length is shorter than the average distance between impurities, W 2  and W ,  
behave as in the pure case. Therefore at some characteristic temperature, which depends 
on x ,  W ,  is expected to exhibit the crossover behavior. This is very evident in the case 
o f j  = 0.5. Although the experimental observations have been made on the sum of W1 
and W,, we can still recognize the crossover behaviour at low temperatures. 

In order to obtain reliable information on the symmetry of the exchange interactions 
in FeMgB04, it is probably necessary to perform analogous calculations for the aniso- 
tropic Heisenberg chain. 
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